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Introduction

A growing body of research has been focusing on obesity and its
pathophysiology. Obesity is a cardinal feature of metabolic syndrome,
a condition characterized by a group of abnormalities that also includes
dyslipidemia, hypertension, and impaired glucose metabolism. In
reproductive biology, metabolic syndrome has garnered considerable
attention because of the connection that exists between diabetes mellitus
(DM), hyperleptinemia, and infertility. Infertility is a common phenomenon
in modern societies, affecting an estimated 15% of couples attempting to
conceive who are not able to do so within one year. Male factors are
believed to play a role in 20 to 50% of infertility cases [1].

Diabetes mellitus is characterized by poor glucose control leading to
hyperglycemia. The two types of DM are type I DM, or insulin-dependent
diabetes mellitus (IDDM), a condition characterized by an absolute or
relative lack of insulin due to autoimmune destruction of the insulin
secreting β-cells in the islets of Langerhans in the pancreas; and type II DM,
non-insulin dependent diabetes mellitus (NIDDM), characterized by cellular
insulin insensitivity despite sufficient insulin levels [2]. Both types of DM
are well recognized as a cause of sexual dysfunction, which in turn also
contributes to infertility [3]. Diabetes mellitus is thought to affect male
reproductive function at multiple levels due to its effects on the endocrine
control of the spermatogenesis process and spermatogenesis itself, as
well as impairing penile erection and ejaculation [4]. Many studies involving
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A b s t r a c t

In recent years, the incidences of obesity, diabetes mellitus and male factor
infertility have increased in the general population. Obesity, which can lead to
metabolic syndrome, is characterized by elevated leptin levels; diabetes mellitus
is characterized by decreased insulin levels or insulin insensitivity. A large body
of evidence suggests that insulin and leptin play a role in the physiology 
of human reproduction. Insulin and leptin deficiencies have been shown to affect
reproductive function negatively in humans and animal models. These hormones
are thought to affect male reproduction at multiple levels due to their effects
on endocrine control of spermatogenesis and spermatogenesis itself, as well
as on mature ejaculated spermatozoa. 
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diabetic animal models have demonstrated an
impairment of sperm quality [5, 6], which leads to
a reduction in fecundity [6-9]. Furthermore,
researchers have reported that men affected
with IDDM have sperm with severe structural
defects, significantly lower motility [10] and lower
ability to penetrate zona free hamster eggs [11]. In
recent years, the incidence of NIDDM has increased
due to an increase in obesity [3]. An increase in the
prevalence of DM will pose a significant problem to
human fertility. 

Obese individuals also are reported to have
higher circulating leptin levels as well as a higher
prevalence of infertility [12, 13] than non-obese
individuals. Leptin is a 16-kDa protein that is
produced mainly by adipose tissue and encoded by
the ob gene [14]. It also is produced by the placenta
[15], stomach [16], and skeletal muscles [17]. Leptin’s
tertiary structure resembles that of cytokines and
lactogenic hormones [18]. Leptin is best known as
a regulator of food intake and energy expenditure
via hypothalamic-mediated effects [19]. An
increasing body of data suggests that leptin also
acts as a metabolic and neuroendocrine hormone.
It is involved in glucose metabolism as well as in
normal sexual maturation and reproduction [20].
Thus, changes in plasma leptin concentrations can
have important and wide-ranging physiological
implications. This review aims to highlight the roles
of both insulin and leptin in male reproduction as

well as focus on their possible effects at various
reproductive levels that contribute to male infertility.

Endocrine effects of insulin on male
reproduction

The importance of insulin has been
demonstrated in male rat reproduction by using
streptozotocin to deplete the β-cells of the
pancreas, thereby inducing IDDM [7]. Insulin
deficiency in these rats led to a decrease in Leydig
cell number as well as an impairment in Leydig cell
function. This consequently translated to a decrease
in androgen biosynthesis and serum testosterone
levels. The impaired Leydig cell function and
subsequent decrease in testosterone in IDDM could
be explained by the absence of the direct
stimulatory effects of insulin on Leydig cells, as well
as by an insulin-dependent decrease in FSH and LH
levels [17]. 

It also has been reported [10] that insulin 
plays a central role in regulation of the
hypothalamic-pituitary-testicular axis by the
reduction in secretion of LH and FSH in diabetic
men, as well as in knockout mice lacking the insulin
receptor in the hypothalamus. Both the diabetic
men and the knockout mice had notably impaired
spermatogenesis, increased germ cell depletion,
and Sertoli cell vacuolization [10, 21]. Figure 1 show
that insulin is required to stimulate the
hypothalamus to release gonadotrophin releasing

FFiigguurree 11.. A schematic interaction of insulin, leptin and the endocrine control of spermatogenesis. Diabetes mellitus
and obesity have an influence on circulating insulin and leptin levels, respectively. Both insulin and leptin affect the
secretion of gonadotrophin releasing hormone (GnRH) from the hypothalamus which subsequently orchestrate the
secretion of LH and FSH from the pituitary gland that affect gonadal function and spermatogenesis. Both insulin
and leptin can exert direct effects on the testes as well
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hormone (GnRH), which instructs the release of LH
and FSH from the pituitary gland. Higher insulin
concentrations, such as those found in NIDDM,
have been reported to lead to hypogonadism [22]
as well as decreased serum testosterone levels [23].
Furthermore, Pitteloud et al. [24] also reported than
insulin resistance lead to a decrease in testosterone
secretion at the testicular level (Leydig cell) that
was not due to changes in hypothalamic or pituitary
function. These findings point to a direct action 
of insulin at the gonadal level (see Figure 1).

Endocrine effects of leptin on male
reproduction

Three leptin receptor isoforms have been
reported to be present in gonadal tissue, suggesting
that leptin could exert a direct endocrine action on
the gonads [25-27]. Indeed, studies have shown that
treatment of infertile ob/ob knockout mice with
leptin restored reproductive ability [28]. Injecting
these ob/ob mice with leptin reportedly caused an
elevation in FSH levels and also stimulated 
gonadal development [29]. Chronic administration 
of anti-leptin antibody to rats was shown to inhibit
LH release [30].

Humans deficient in leptin exhibit effects similar
to those observed in animal models. A case study
regarding a male with a homozygous leptin
mutation reported that he was still pre-pubertal and
showed clinical traits typical of hypogonadism and
androgen deficiency despite being 22 years of age
[31]. Another male subject with a leptin receptor
deficiency reportedly showed no pubertal
development at either 13 or 19 years of age [32].
Reports like these emphasize the importance 
of leptin in the onset of puberty in humans.

The mechanisms through which leptin acts are
not clearly elucidated as yet but probably involve
the hypothalamus and its subsequent effects on
the pituitary and gonadal axis. Administration 
of GnRH to leptin-deficient men has been shown
to induce a normal increase in serum LH and FSH
levels, while the administration of gonadotrophins
increased testosterone levels [31]. As illustrated in
Figure 1, this effect may be the result of leptin
stimulating GnRH synthesis or secretion from 
the hypothalamic neurons or secretion of gonado-
trophins by the pituitary gland [33].

Effects of insulin on spermatogenesis 

Morphological abnormalities have been reported
in IDDM human testicular biopsies. These
abnormalities included increasing tubule-wall
thickness, germ cell depletion and Sertoli cell
vacuolization [34]. Morphological and functional
spermatozoal abnormalities that have been
observed in diabetic animal models appear to be
reversible with insulin administration [35, 36].

A significantly lower sperm count and epididymal
sperm motility were reported in diabetic rats in
comparison to controls [36]. In vitro insulin
administration to these retrieved epididymal
spermatozoa restored their motility to that 
of normal levels, suggesting a direct effect on
spermatozoa due to defective carbohydrate
metabolism. Studies have reported that insulin as
well as insulin-like growth factor I (IGF-I) and
IGF-II promote the differentiation of spermatozoa
into primary spermatocytes by binding to the
IGF-I receptor [37]. Evidence also suggests that both
the sperm membrane and the acrosome represent
cytological targets for insulin [38].

Effects of leptin on spermatogenesis 

The importance of leptin during the process 
of spermatogenesis was demonstrated by the
observation that a leptin deficiency in mice was
associated with impaired spermatogenesis,
increased germ cell apoptosis, and up-regulated
expression of pro-apoptotic genes within the testes
[39]. This resulted in a reduction in germ cell
numbers and the absence of mature spermatozoa
in the seminiferous tubules. This finding adds
further support to the importance of physiological
leptin levels in the normal production of male
gametes.

Insulin and ejaculated spermatozoa

Insulin has been shown to play a central role in
the regulation of gonadal function; however, its
significance in male fertility is not completely
understood and properly elucidated [40]. Until
recently, insulin was thought to be produced only
by the β-cells in the pancreas of adult mammals [41].

Newer studies, however, have demonstrated that
insulin is expressed in and secreted by human
ejaculated spermatozoa. Both insulin mRNA as well
as the actual protein were detected in ejaculated
human sperm [41]. Capacitated spermatozoa were
found to secrete more insulin than noncapacitated
spermatozoa [41], suggesting a possible role for
insulin in sperm capacitation. 

Our group, furthermore, has shown the
importance of insulin on ejaculated human
spermatozoa in vitro [42]. Insulin administration to
the medium (10 µIU) was found to significantly
increase total and progressive motility and enhance
hyperactivation characteristics (VCL and ALH)
significantly. In vitro insulin administration also led
to an increase in spontaneous acrosome reaction,
as well as enhanced sensitivity to the
progesterone-induced acrosome reaction. Whether
this increase was due to the agonists’ effect on
capacitation or the acrosome reaction itself is
unclear. Our group also demonstrated that insulin
increased nitric oxide (NO) production in human
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spermatozoa, possibly via the phosphoinositide
3-kinase (PI3K) signaling pathway as evidenced by
the reduction in NO production when the PI3K
inhibitor wortmannin was administered. Insulin may
play a role in enhancing the fertilization capacity of
human spermatozoa by increasing motility, NO
production and acrosome reaction sensitivity [42].

Leptin and ejaculated spermatozoa

Despite the fact that leptin has been implicated
in the regulation of reproduction in humans and
animal models and that its specific role in the
female reproductive system has been well
established, its exact role (s) in the male
reproductive system remains to be clarified [43, 44].
Leptin expression in ejaculated human spermatozoa
has been demonstrated by identifying its transcripts
by means of reverse transcription-polymerase chain
reaction; its protein presence was evidenced by
Western blot analysis and its localization by
immunostaining techniques [45]. 

The significance of leptin in male reproduction
will remain ambiguous for at least a while as results
from studies are quite controversial and
contradictory. Some studies have indicated positive
effects [46], whereas others have reported negative
effects of leptin on gonadal function [47]. Seminal
plasma leptin levels have been shown to be
significantly lower in normozoospermic patients
compared with pathological semen samples, and
higher leptin levels have shown a negative
correlation with sperm function [48]. Conversely,
other reports show no correlation between leptin
levels and sperm motility or morphology [49].
Capacitated spermatozoa were reported to secrete
more leptin than noncapacitated spermatozoa,
suggesting that leptin plays a role in the process 
of capacitation [45]. Moreover, leptin receptors were
detected by immunohistochemistry in ejaculated
spermatozoa and were localized on the tail area [50].
Similar to what we observed with insulin, our group
has demonstrated that in vitro leptin administration
increased various motility parameters and NO
production and also increased the sensitivity 
of spontaneous and progesterone-induced acrosome
reactions [42]. 

GLUT8 as a glucose transporter in human
spermatozoa

Glucose uptake and metabolism are essential
for cell proliferation and survival and usually is
carried out through glucose transporters (GLUTs).
In mammals there are 14 known members of GLUT
proteins [51]. Insulin regulation of glucose transport
in target tissues is known to involve the specialized
GLUT4 isoforms, which are localized only in
insulin-responsive tissues [51]. 

Glucose metabolism is recognized as essential
for germ cell fertility, and disruptions to it such as
those occurring in DM are known to impair
spermatogenesis, causing infertility [10, 11]. Until
recently, the assumption was that GLUT5 was the
major sugar transporter in the sperm cell [52].
However, researchers now have shown that GLUT5
is a very specific fructose transporter [53] and does
not transport glucose to a significant extent.
Because GLUT5 was not detected in rat testis, other
sugar transporters, presumably GLUT3, have been
suggested for catalyzing the fuel supply of the rat
sperm cell [54]. In recent years, a novel
447-amino-acid glucose transporter protein, GLUT8
has been described [55-57]. GLUT8 is expressed to
some extent in insulin-sensitive tissues, e. g., brain,
adrenal gland, spleen, adipose tissue, muscle, heart,
and liver [55, 56, 58]. GLUT8 mRNA expression was
determined to be highest in testicular tissue and
linked to circulating gonadotrophin levels [56, 59]. 

GLUT8 was found to be located specifically in
the head of mouse and human spermatozoa
predominantly within the acrosome of mature
sperm [60]. Coincidentally, immunohistochemical
studies have shown that insulin also is located
predominantly in these areas of human
spermatozoa [38]. The intracellular localization 
of GLUT8 is similar to that of the insulin-sensitive
glucose transporter GLUT4, and it has indeed been
suggested that insulin could produce a trans-
location of GLUT8 to the plasma membrane of the
blastocyst [57]. In addition, GLUT8 has been shown
to recycle in a dynamic-dependent manner between
internal membranes and the plasma membrane in
rat adipocytes and COS-7 cells [61]. As illustrated in
Figure 2, both insulin and leptin stimulation
converges at the level of PI3K during the
intracellular signaling pathway. PI3K activation leads
to protein kinase B (PKB/Akt) phospho-rylation,
which in turn causes GLUT8’s translocation and
insertion into the cell membrane. This allows
increased glucose uptake, fueling glucose
metabolism necessary for increased motility and
the acrosome reaction. Simultaneously the PI3K and
PKB/Akt pathway activated by insulin and leptin
also can diverge and stimulate the endothelial nitric
oxide synthase (eNOS) enzyme of spermatozoa to
increase NO generation NO’s ability to increase
sperm motility and acrosome reaction also has been
demonstrated [62]. Therefore, we hypothesize that
insulin and leptin can act via two possible methods
(GLUT8 translocation; NO production) to influence
human sperm motility and acrosome reaction. 

In conclusion, insulin levels, leptin levels, and
male infertility are associated. Decreased insulin
levels have been shown to exert adverse effects on
reproductive endocrine function and gonadal
function, as well as on ejaculated spermatozoa
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function (Table I). On the other hand, decreased
leptin levels negatively affect the male’s
reproductive capacity by delaying puberty; higher
leptin levels have been reported to correlate
negatively with human sperm function (Table I).

Insulin and leptin concentrations are
a double-edged sword, and a proper balance must
be struck for normal reproductive function. Insulin

and leptin impairment due to pathologies such
as DM, obesity, and metabolic syndrome explain
why infertility is connected to these conditions.
Despite the fact that the relationship between
obesity, metabolic syndrome, DM, and male
infertility has been established, the exact
mechanisms by which they act have not been
elucidated to the fullest. This brief review has

FFiigguurree 22..  Hypothetical model of the functional interaction between insulin and leptin in human ejaculated
spermatozoa. Insulin receptor activation and leptin receptor stimulation converge on PI3K via IRS1/2 and JAK/STAT
respectively. Activation of the PI3K and PKB/Akt pathway can lead to GLUT8 translocation and insertion in the cell
membrane and/or induce NO production
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TTaabbllee  II..  Effects of different insulin and leptin concentrations on male reproductive function

HHiigghheerr  ccoonncceennttrraattiioonnss AAbbsseennccee  oorr  lloowweerr  ccoonncceennttrraattiioonnss

IInnssuulliinn Hypogonadism Decreased Leydig cell number;
(Dhindsa et al., 2004) impaired Leydig cell function

(Murray et al., 1983)

Low testosterone concentrations Reduction in LH and FSH; impaired 
(Barret-Connor et al., 1990) spermatogenesis; increased germ cell 

depletion; Sertoli cell vacuolization
(Brüning et al., 2000; Bacetti et al., 2002)

Decreased testosterone levels independent Sperm morphological abnormalities
of hypothalamus-pituitary-axis (Leydig cells) (Cameron et al., 1985)
(Pitteloud et al., 2005)

Reduced sperm motility
(Lampiao et al., 2008)

LLeeppttiinn Inverse correlation with percentage motile Decreased FSH and LH secretion
spermatozoa and straight line velocity (Carro et al., 1997)
(Glander et al., 2002) Delayed puberty; hypogonadism; 

androgen deficiency 
(Strobel et al., 1998)
Increased germ cell apoptosis; 
impaired spermatogenesis 
(Bhat et al., 2006)
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focused only on two hormones i.e., insulin and
leptin, that possibly can be implicated under
these conditions. Further studies are needed not
only to tease out the exact roles each plays, but
also to help find possible in vivo and in vitro
solutions and treatment regimes for male
infertility patients. 
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